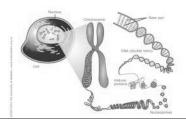
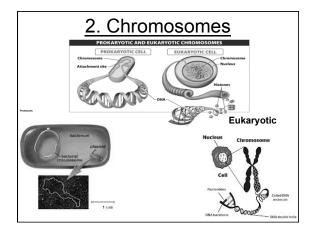


DNA Function

- Main Function: **DNA's major function is** to code for proteins.
 - 1. Storage of genetic information
 - 2. Self-duplication & inheritance.
 - 3. Expression of the genetic message.
- How: Information is encoded in the order of the nitrogenous bases.


Basic Shape:


Double Helix

Chromosomes

Compress and store Genetic code

Compress and store long term

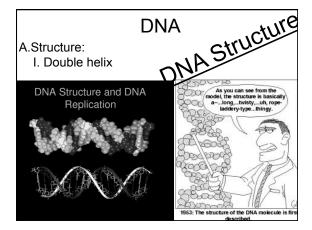
Chromosomes

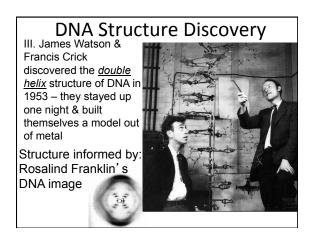
Prokaryotic

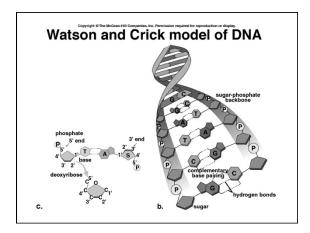
- · Circular DNA
- Very small
- 1 chromosome per cell
- Not housed in a nucleus.

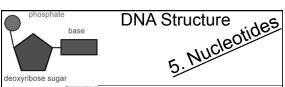
Eukaryotic

- Linear DNA
- Long
- Several chromosomes per cell.
- · Housed in a nucleus.
- · Histone

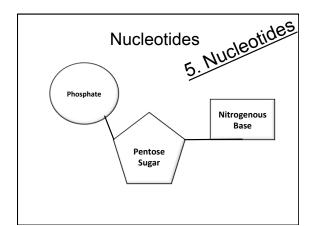

 - Protein that---"spools".
 Same in all eukaryotes
 Nucleosome—2 loops of DNA wrapped around 8 histone proteins..

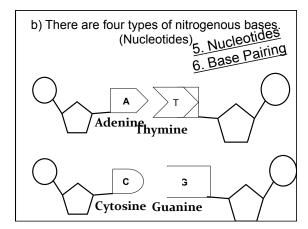

Karyotype = Map of your chromosomes, humans have 46


A karyotype from a healthy human has 22 pairs of non-sex chromosomes, and either:

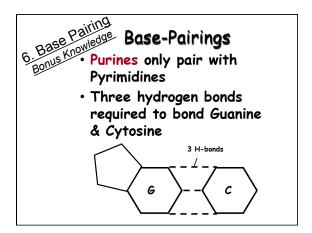

1. One X chromosome, and one Y chromosome OR âă 2. Two X Chromosomes For a total of:

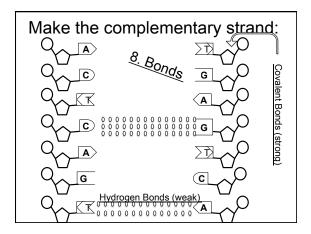
I. DNA looks like a twisted ladder = "double helix" II. The phosphate and sugar form the backbone of the DNA molecule III. The bases form the "rungs".

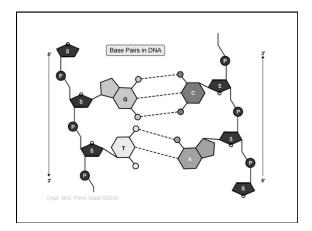




- II. A molecule of DNA is made up of millions of tiny subunits called Nucleotides.
 - 1. Each nucleotide consists of:
 - a) Phosphate group
 - b) Pentose sugar
 - c) Nitrogenous base







Nucleotides 6. Base Pairing
Each base will only bond with one other specific
base.
- Adenine (A) - Thymine (T) - Form a base pair.
- Cytosine (C) - Guanine (G) Form a base pair.
Because of this complementary base pairing,
the order of the bases in one strand determines
the order of the bases in the other strand.

Nitrogenou	<u>6. Base Pairing</u> US Bases
• Double ring PL Adenine (A) Guanine (G)	JRINES A or 6
• Single ring PYI Thymine (T) Cytosine (C)	T or C

Gecko Feet Gluing Ungluing

Reading DNA

- To crack the genetic code found in DNA we need to look at the sequence of bases.
- The bases are arranged in triplets called codons.

AGG-CTC-AAG-TCC-TAG TCC-GAG-TTC-AGG-ATC

Genes to Phenotype

- A gene is a section of DNA that codes for a protein.
- Each unique gene has a unique sequence of bases.
- This unique sequence of bases will code for the production of a unique protein.
- It is these proteins and combination of proteins that give us a unique phenotype.

Chloe Emma Estelle

Where are we going with this? The "Central Dogma" of all Biology:

Replication

What's so special about proteins?

"Life" = chemical reactions

 Every chemical reaction in a cell is made millions of times faster by proteins called enzymes.

Finish your DNA Model!

Central Dogma of Genetics

- DNA
- mRNA
- · Proteins
- Traits

- Unzip
- Template
- · Floating nucleotides
- Replication
- Template
- · Sense strand
- · Semiconservative
- Replication
- DNA Polymerase
- · Proofreading functions
 - 5' to 3' only
 - · Replication fork
 - Discontinuous assembly
 - · Okazaki fragments

You're all mutants! (and so am I)

Our Focus:

- 1. What are mutations and what causes them
- 2. Cell reproduction: All your body cells have the same DNA in them, how does that happen? (mitosis)
- 3. Your sperm or egg have only half as much DNA as your body cells, how does that happen? (meiosis)

Big Picture of Evolution Think Pair Share

- What are mutations?
- · How are they related to evolution?
- · Are mutations good or bad?

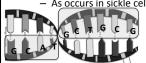
Big Picture of Evolution

What are mutations?

Changes to DNA

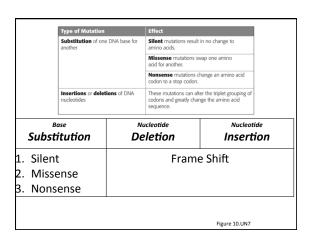
How are they related to evolution?

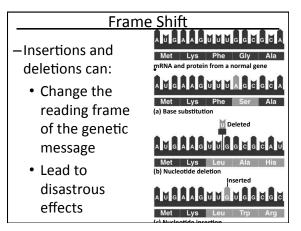
They are the CAUSE

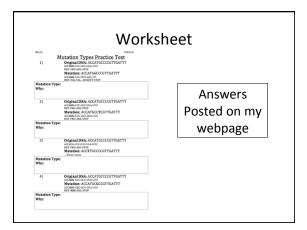

Are mutations good or bad?

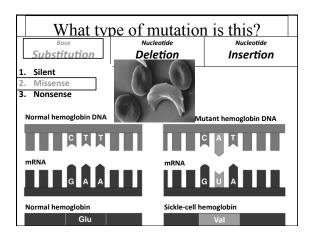
Mostly Bad

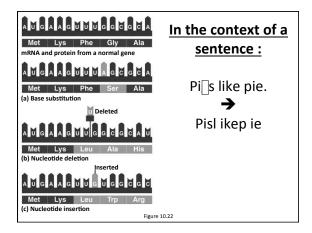
But once in a blue moon they offer some advantage and if survival of the fittest kicks in, then it gets passed down

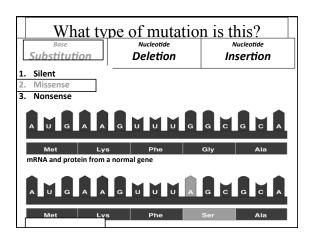

Mutations

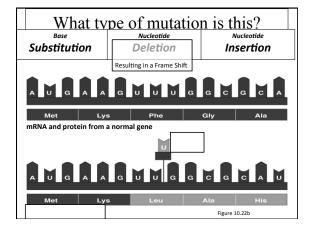

- A mutation is any change in the nucleotide sequence of DNA.
- Mutations can change the amino acids in a protein – but many times they don't
- Mutations can involve:
 - Large regions of a chromosome
 - Just a single nucleotide pair
 - As occurs in sickle cell anemia




Types of Mutations				
Substitution	Nucleotide Deletion	Nucleotide Insertion		
The replacement of one base by another	The loss of a nucleotide	The addition of a nucleotide		
CTGAGT.	CTGAGT. Deletion	CTGACT.		






Substitution	Nucleotide Deletion	Nucleotide Insertion
1. Silent: No Change in the amino acid made 1. What color is that dog? 2. What colur is that dog? 2. Missense: mutation swaps one amino acid for another. 1. What color is that dog? 2. What color are that dog? 3. Nonsense: Mutation change an amino acid to a stop codon. 1. What color is that dog?	Frame	e Shift
2. What?		
I		

What type of mutation is this?					
Base	Nucleotide	Nucleotide			
Substitution	Deletion	Insertion			
		Resulting in a Frame Shift			
A U G A A		G G C G C A			
mRNA and protein from a normal gene					
Met Lys	s Leu	Trp Arg			
		Figure 10.22c			