Lecture 14: 2 Parts:

- 1. Meiosis Chapter 8
- 2. Inheritance Chapter 9
- Leading into Lecture 15:
 - 1. Evolution and Inheritance Chapter 13

Important Latin Roots					
Meioun Mei	Tosis	Haplo	Di	Oid	
• Lessen • Small	• Process	• Single	• 2	"resembling," "like" Greek: Eides - "Having the form of"	

The Origins of Genetic Variation

-You are not exactly like your parents!

Why? (3 reasons)

- 1. Independent Assortment of Chromosomes
- Crossing Over
 Random Fertilization

- For any species the total number of chromosome combinations that can appear in the gametes due to independent assortment is:
 - 2^n where n is the haploid number.
- For a human:
 - n = 23
 - 2²³ = 8,388,608 different chromosome combinations possible in a gamete

3. Random Fertilization

- A human egg cell is fertilized randomly by one sperm, leading to genetic variety in the zygote.
- If each gamete represents one of 8,388,608 different chromosome combination at fertilization, humans would have 8,388,608 × 8,388,608, or more than 7 trillion, different possible chromosome combination

When Meiosis Goes Awry

- What happens when errors occur in meiosis?

- Such mistakes can result in genetic abnormalities that range from mild to fatal.

NONDISJUNCTION IN MEIOSIS I

Nondisjunction: Pair of homologous chromosomes falls to separate.

Meiosis II

Meiosis II

Nondisjunction: Pair of sister chromatois falls to separate.

Down Syndrome: An Extra Chromosome 21

– Down Syndrome:

- Is also called trisomy 21
- •^{\$} Is a condition in which an individual has an extra chromosome 21
- Affects about one out of every 700 children

Evolution Connection: The Advantages of Sex

 Asexual reproduction conveys an evolutionary advantage when plants are:

Cons					
1. No genetic diversity					
C 2010 Parron lideoties Inc					

Sexual Reproduction

Sexual reproduction may convey an evolutionary advantage by:

Pros	Cons
Speeding adaptation to a changing environment	1. Need a partner 2. STDs
Allowing a population to more easily rid itself of harmful genes	

The Process of Science: Do All Animals Have Sex?

- Observation: No scientists have ever found male bdelloid rotifers, a microscopic freshwater invertebrate.
- Hypothesis: Bdelloid rotifers have thrived for millions of years using only asexual reproduction.
- Prediction: Bdelloid rotifers would display much more variation in their homologous pairs of genes than most organisms.

© 2010 Pearson Education In

- Experiment: Researchers compared sequences of a particular gene in bdelloid and non-bdelloid rotifers.
- Results:
 - Non-bdelloid sexually reproducing rotifers had nearly identical homologous genes
 - Bdelloid asexually reproducing rotifers had homologous genes that differed by 3.5–54%.
- Conclusion: Bdelloid rotifers have evolved for millions of years without any sexual reproduction.

- The DNA in a cell is packed into an elaborate, multilevel system of coiling and folding.
- Histones are proteins used to package DNA in eukaryotes.
- Nucleosomes consist of DNA wound around histone molecules.