

THE LOSS OF BIODIVERSITY

- Biological diversity, or biodiversity, includes
 - genetic diversity,
 - · species diversity, and
 - ecosystem diversity.

Genetic Diversity

- The genetic diversity within populations of a species is the raw material that makes microevolution and adaptation to the environment possible.
- Genetic resources for that species are lost if
 - 1. local populations are lost and/or

We are in the the 6th mass e

- Ecologists believe t pushing species tov extinction at an ala
- · The present rate of loss may
 - be 100 times highe time in the past 100 and
 - result in the loss of living plant and ani by the end of this c

	_
pecies Diversity	
midst of extinction	
that we are ward Rate of Extinction	
rming rat Rate of Extinction	
er than at a 0,000 year 1700 1800 1900 2000	
f half of all	
imal species century.	

Species Diversity - Two recent victims of human-caused extinctions are · Chinese river dolphins and • golden toads.

Ecosystem Diversity

- The local extinction of one species can have a negative effect on the entire ecosystem.
- · The disappearance of natural ecosystems results in the loss of **ecosystem** services, functions performed by an ecosystem that directly or indirectly benefit people, including
 - air and water purification,
 - climate regulation, and
 - erosion control.

Ecosystem Diversity

- Coral reefs are rich in species diversity, yet
 - an estimated 20% of the world's coral reefs have been destroyed by human activities and
 - a 2011 study found that 75% of the remaining reefs are threatened, climbing to 90% by 2030 if current abuse continues.

Causes of Declining Biodiversity

- Ecologists have identified four main factors responsible for the loss of biodiversity:
- 1. Habitat destruction and fragmentation,
- 2. Invasive species,
- 3. Overexploitation, and
- 4. Pollution.

© 2013 Pearson Education, In

Habitat Destruction

- Biodiversity is threatened by the destruction and fragmentation of habitats by
 - agriculture,
 - urban development,
 - forestry, and
 - mining.

© 2013 Pearson Education Inc.

Invasive Species

- Invasive species have
 - competed with native species,
 - preyed upon native species, and
 - parasitized native species.

© 2013 Pearson Education, Inc.

Over exploitation

- People have overexploited wildlife by harvesting at rates that exceed the ability of populations to rebound. (Food, Pets and Fear)
- Overharvesting has greatly affected populations of
- Tigers, the American bison, and Galápagos tortoises.

Pollution

- Air or water pollution is a contributing factor in declining populations of hundreds of species.
 - -Acid precipitation is a threat to ecosystems.
 - -The global water cycle can transport pollutants from terrestrial to aquatic ecosystems hundreds of miles away.

COMMUNITY ECOLOGY

- An organism's biotic environment includes
 - other individuals in its own population and
 - populations of other species living in the same area.
- An assemblage of species living close enough together for potential interaction is called a community.

Interspecific Interactions

 Interspecific interactions are interactions between species.

Interspecific Interactions

- Interspecific interactions can be classified according to the effect on the populations concerned.
 - **Competition:** -/- interactions occur when two populations in a community compete for a common resource.
 - Mutualism: +/+ interactions are mutually beneficial, such as between plants and their pollinators.
 - Predation: +/- interactions occur when one population benefits and the other is harmed, such as in predation.

© 2013 Pearson Education, Inc.

Interspecific Competition (-/-)

- In interspecific (between-species) competition, the population growth of a species may be limited
 - by the population densities of competing species and
 - by the density of its own population.

Interspecific Competition (-/-) ***Page Anti-ecological niche is an organism's total use of the • abiotic and • biotic resources in its environment. (a) Virginia's warbler (b) Orange-crowned warbler

Interspecific Competition (-/-) The competitive exclusion principle states that if two species have an ecological niche that is too similar, the two species cannot coexist in the same place. • So they separate and segregate niches **Copylication of the competition of the comp

Predation (+/-)

- Some insects have elaborate disguises that make them resemble
 - twigs,
 - leaves,
 - bird droppings, and
 - predators.

© 2013 Pearson Education, Inc.

Predation (+/-)

- An Aposmotic/warning coloration is
 - a brightly colored pattern and
 - a way to warn predators that an animal has an effective chemical defense.

© 2013 Pearson Education, Inc.

Predation (+/-)

 Mimicry is a form of defense in which one species looks like another species.

Herbivory (+/-)

- Herbivory is the consumption of plant parts or algae by an animal.
- Plants have evolved numerous defenses against herbivory, including
 - spines,\
 - Silica (glass)
 - thorns, and
 - chemical toxins.

© 2013 Pearson Education, In

Evolutionary Arms Race Between plants and herbivores (St) SILICA

Trophic Structure

- Trophic structure is the feeding relationships among the various species in a community.
- A community's trophic structure determines the passage of energy and nutrients from plants and other photosynthetic organisms
 - to herbivores
 - $\bullet\,$ and then to predators.

© 2013 Pearson Education, In

Trophic Structure

- Primary consumers are called herbivores, which eat plants.
- Above the level of primary consumers are carnivores, which eat the consumers from the level helow.
 - Secondary consumers eat primary consumers.
 - Tertiary consumers eat secondary consumers.
 - Quaternary consumers eat tertiary consumers.

© 2013 Pearson Education, In

Trophic Structure

- Different organisms consume detritus.
 - Scavengers, such as crows and vultures, feast on carcasses.
 - Detritivores, such as earthworms and millipedes, primarily consume decaying organic material.
 - Decomposers, mainly prokaryotes and fungi, secrete enzymes that digest molecules in organic material and convert organic materials into inorganic forms.

Keystone **Species**

- 1) A keystone species is a species whose whose **impact** on its community or ecosystem are larger and greater than would be expected from its relative abundance or total biomass in the environment.
- 2) Keystone species play the same role in many ecological communities by maintaining the structure and integrity of the community.

Keystone Species: Sea Otter

- Food Web Overview:
 - 1. Sea Otters eat urchins
 - 2. Urchins eat Kelp

ECOSYSTEM ECOLOGY

- Energy flows through and ultimately out of ecosystems.

ranges from 5 to 20% andis illustrated here as 10%.

Energy Flow in Ecosystems	
 All organisms require energy for 1. growth, 2. maintenance, 3. reproduction, and, 4. in many species, locomotion. 	
© 2013 Pearson Education, Inc.	
Drivers Dry hosting on July Fr Dr. J. v. CF.	
Primary Production and the Energy Budgets of Ecosystems	
 Each day, Earth receives about 10¹⁹ kcal of solar energy, the energy equivalent of about 100 million atomic bombs. Most of this energy is absorbed, scattered, or reflected by the atmosphere or by Earth's surface. About 1% is converted to chemical energy by 	
photosynthesis.	
© 2013 Pearson Education, Inc.	
Ecological Pyramids Fgure 20.28	
A pyramid of production	
illustrates the cumulative loss of energy with each	
transfer in a food chain. 10% Rule	
The energy level available	
to the next higher level	

Chemical Cycling in Ecosystems

- Life depends on the recycling of chemicals.
 - Nutrients are acquired and waste products are released by living organisms.
 - At death, decomposers return the complex molecules of an organism to the environment.
 - The pool of inorganic nutrients is used by plants and other producers to build new organic matter.

© 2012 Baseon Education Inc

The General Scheme of Chemical Cycling

- Biogeochemical cycles involve

- biotic components and
- abiotic components from an abiotic reservoir where a chemical accumulates or is stockpiled outside of living organisms.

© 2013 Pearson Education, Inc

CONSERVATION AND RESTORATION BIOLOGY

- Conservation biology is a goal-oriented science that seeks to understand and counter the loss of biodiversity.
- Restoration
 ecology uses
 ecological
 principles to
 develop methods
 of returning
 degraded areas to
 their natural state.

Biodiversity "Hot Spots"

- Conservation efforts are often focused on biodiversity hot spots, relatively small areas that have
 - a large number of endangered and threatened species and
 - an exceptional concentration of endemic species, those that are found nowhere else.

Mouse lemur

2013 Pearson Education, Inc.

Conservation at the Ecosystem Level

- A movement corridor is a narrow strip or series of small clumps of suitable habitat that connects otherwise isolated patches.
- Corridors
 - can promote dispersal and help sustain populations and
 - are especially important to species that migrate between different habitats seasonally.

© 2013 Pearson Education, Inc