ORGANIC COMPOUNDS Organic compounds are carbon-based molecules. A cell is mostly water. (Hydrogen and Oxygen) The rest of the cell consists mainly of carbon-based molecules. Carbon forms large, complex, and diverse molecules necessary for life's functions. Organic Chemistry The Chemistry of Carbon

Organisms also have to break down macromolecules. Digestion breaks down macromolecules to make monomers available to your cells. Everyone digests macromolecules the same way too....

The Process of Science: Does Lactose Intolerance Have a Genetic Basis? - Observation: Most lactose-- Prediction: A mutation would be intolerant people have a normal version of the lactase gene. found near the lactase gene. Experiment: Genes of 196 lactose - Question: What is the genetic intolerant people were examined. basis for lactose intolerance? - Results: Researchers found a - Hypothesis: Lactose-intolerant 100% correlation between lactose people have a mutation but not intolerance and a nucleotide at a within the lactase gene. site approximately 14,000 nucleotides away from the lactase of chromosome 2 Chromosome 2 Lactase gene

Evolution Connection:

The Evolution of Lactose Intolerance in Humans

- Most people are lactose-intolerant as adults.
- Lactose intolerance is found in
- 80% of African Americans and Native Americans,
- 90% of Asian Americans, but
- Only 10% of Americans of northern European descent.
- Lactose tolerance appears to have evolved in northern European cultures that relied upon dairy products.
- Ethnic groups in East Africa that rely upon dairy products are also lactose tolerant but due to different mutations.

© 2013 Pearson Education, Inc

Polysaccharides - Starch Is a familiar example of a polysaccharide, Used by plant cells to store energy, and Consists of long strings of glucose monomers. - Potatoes and grains are major sources of starch in our diet. Starch granules in potato tuber cells

Polysaccharides - Glycogen is • Used by animals cells to store energy and • Converted to glucose when it is needed. Glycogen granules in muscle tissue

- Cellulose is the most abundant organic compound on Earth! forms cable-like fibrils in the walls that enclose plant cells, and cannot be broken apart by most animals. Cellulose microfibrils in a plant cell wall Cellulose molecules

Polysaccharides

Lipids
Only need C, H, O to make a basic fat (some lipids use more elements).
Important for?
 A typical fat, or triglyceride, consists of A glycerol molecule, Joined with three fatty acid molecules, Via a dehydration reaction.

- If the carbon skeleton of a fatty acid • has fewer than the maximum number of hydrogens, it is unsaturated; • if it has the maximum number of hydrogens, it is saturated. - A saturated fat has • no double bonds and • all three of its fatty acids saturated.

Fats

$- \, Hydrogenation$

- · Adds hydrogen,
- Converts unsaturated fats to saturated fats,
- Makes liquid fats solid at room temperature, and
- Creates trans fat, a type of unsaturated fat that is particularly bad for your health.

© 2013 Pearson Education, Inc

- Saturated fats:
- a. have no double bonds in the fatty acids
- b. are liquid at room temperature
- c. are abundant in plants
- d. all of the above

Protein Shape

- A functional protein consists of
- one or more polypeptide chains,
- precisely twisted, folded, and coiled into a molecule of unique shape.
- Proteins consisting of one polypeptide have three levels of structure.
- Proteins consisting of more than one polypeptide chain have a fourth level, quaternary structure.

Protein Shape

- A protein's three-dimensional shape
- typically recognizes and binds to another molecule and
- enables the protein to carry out its specific function in a cell.

What Determines Protein Shape?

- A protein's shape is sensitive to the surrounding environment.
- An unfavorable change in temperature and/or pH can cause **denaturation** of a protein, in which it unravels and loses its shape.
- High fevers (above 104°F) in humans can cause some proteins to denature.

What Determines Protein Shape?

- Misfolded proteins are associated with
- · Alzheimer's disease,
- · Mad cow disease, and
- · Parkinson's disease.
- All caused by Mutations (changes in DNA)

Nucleic Acids

- Nucleic acids are macromolecules that
- Are made of <u>nucleotide</u> monomers • provide the directions for building proteins, and include **DNA** and **RNA**.

 Nitrogenous base
 (A, G, C, or T) Sugar Sugar
 (b) Symbol used in this book (a) Atomic structure

Nucleic Acids

- Nucleic acids are polymers made from monomers called **nucleotides**.
- Each nucleotide has three parts:
 - 1. a five-carbon sugar,
 - 2. a phosphate group, and
 - 3. a nitrogen-containing base.

2013 Pearson Education, Inc

Nucleic Acids

- Dehydration reactions
 - Link nucleotide monomers into long chains called polynucleotides,
 - Form covalent bonds between the sugar of one nucleotide and the phosphate of the next, and
 - Form a sugar-phosphate backbone.
- Nitrogenous bases hang off the sugar-phosphate backbone.

2013 Pearson Education, Inc

Nucleic Acids

- Two strands of DNA join together to form a double helix
- Bases along one DNA strand hydrogen-bond to bases along the other strand.
- The functional groups hanging off the base determine which bases pair up:
 - A only pairs with T

and

G can only pair with C.

© 2012 Pearson Education Inc

