

Cell MEMBRANE FUNCTION

- · Cells must control flow of materials to and from the environment.
 - Semipermeable Membrane
 - Membrane proteins perform many functions.
- Transport proteins
 - Are located in membranes
 - Regulate the passage of materials into and out of

Passive and Active Transport Across the Membrane

- Concentration gradients
 - Difference in concentration across the membrane
- 1. Going with the Flow: Passive transport
 - Movement from high concentration to low
 No energy required from cell (a)

- 2. Going Against the Flow: Active transport
 - Requires added energy
 Movement from low
 - concentration to high

We must work to move the ball back uphill	A cell must use energy to move molecules up a concentration grad	
	000	
	e e Energ	
	Energ	

Passive Transport Types of Passive Transport: 1. Diffusion is an example of passive transport. • Substances diffuse with or down their concentration gradient 2. Facilitated Diffusion: Some substances can't cross membranes on their own, even if going down concentration gradient. • Specific transport proteins act as selective corridors. • No energy input is needed. 3. OSMOSIS is the diffusion of water through a semipermeable membrane

Water Balance in Animal Cells

- Osmoregulation is the control of water balance within a cell or organism.
 - Most animal cells require an isotonic environment.
 - Many multicellular animals use a kidney

Example: Water Balance in Salt Water Fish Water loss through skin Active ion transport through gills Direction of ion movement (Na*, K*, Cl*) Direction of water movement

Water Balance in Plant Cells - Plant have rigid cell walls. - Plant cells require a hypotonic environment, which keeps these walled cells turgid. H₂O Turgid (b) Hypotonic solution

Active Transport = Moving molecules against/up concentration gradient •Requires Energy •Only for small molecules and ions: H+, Na+, amino acids, glucose, etc. Lower solute concentration ATP Higher solute concentration

Endo and Exocytosis - Moving big molecules

•Requires Energy no matter what direction materials are moving

•Used For:

- Moving big molecules across the membrane like proteins or starch
- Single celled organisms eating
- •White blood cells for killing bacteria

A Little more about **ENZYMES**

- Metabolism is the total of all chemical reactions in an organism.
- Most metabolic reactions require **enzymes**
- What is food for you vs. what is poison to you is all about what enzymes you have

How can enzymes be controlled?? Enzyme Inhibitors

- Many antibiotics work by inhibiting enzymes of disease-causing bacteria.
- Some Enzyme inhibitors bind to the active site = competitive inhibition

Noncompetitive inhibition

- Bind at a remote site
- Change the enzyme's shape
- \bullet Prevent the enzyme from binding to its substrate
- Some reversible
- Some not: cyanide and carbon monoxide

Proteins used for Cell Signaling Receptors on a cell surface trigger signal transduction pathways Outside of cell Cytoplasm Receptor Transduction Response Proteins of signal transduction of glycogen releases glucose for energy Epinephrine (adrenaline) from adrenal glands

New	

- 1. Energy: what is it?
- 2. Cell Respiration: how do we get energy from our food?
- 3. Photosynthesis: how do plants harness the energy from the sun?